Ionic Conductivity of Mixed Glass Former 0.35Na2O + 0.65[xB2O3 + (1 â•fi x)P2O5] Glasses

نویسندگان

  • Randilynn Christensen
  • Garrett Olson
  • Steve W. Martin
چکیده

The mixed glass former effect (MGFE) is defined as a nonlinear and nonadditive change in the ionic conductivity with changing glass former fraction at constant modifier composition between two binary glass forming compositions. In this study, mixed glass former (MGF) sodium borophosphate glasses, 0.35Na2O + 0.65[xB2O3 + (1 – x)P2O5], 0 ≤ x ≤ 1, have been prepared, and their sodium ionic conductivity has been studied. The ionic conductivity exhibits a strong, positive MGFE that is caused by a corresponding strongly negative nonlinear, nonadditive change in the conductivity activation energy with changing glass former content, x. We describe a successful model of the MGFE in the conductivity activation energy terms of the underlying short-range order (SRO) phosphate and borate glass former structures present in these glasses. To do this, we have developed a modified Anderson-Stuart (A–S) model to explain the decrease in the activation energy in terms of the atomic level composition dependence (x) of the borate and phosphate SRO structural groups, the Na+ ion concentration, and the Na+ mobility. In our revision of the A–S model, we carefully improve the treatment of the cation jump distance and incorporate an effective Madelung constant to account for many body coulomb potential effects. Using our model, we are able to accurately reproduce the composition dependence of the activation energy with a single adjustable parameter, the effective Madelung constant, that changes systematically with composition, x, and varies by no more than 10% from values typical of oxide ceramics. Our model suggests that the decreasing columbic binding energies that govern the concentration of the mobile cations are sufficiently strong in these glasses to overcome the increasing volumetric strain energies (mobility) caused by strongly increasing glass-transition temperatures combined with strongly decreasing molar volumes of these glasses. The dependence of the columbic binding energy term on the relative high-frequency dielectric permittivity suggests that the increased polarizability of the bridging oxygens connecting SRO tetrahedral boron units to phosphorus units causes further charge delocalization away from the negatively charged tetrahedral boron units, leading to a lowering of the charge density, and is the underlying cause of the MGFE. Disciplines Materials Science and Engineering Comments Reprinted with permission from Journal of Physical Chemistry B 117 (2013): 16577, doi: 10.1021/jp409497z. Copyright 2013 American Chemical Society. This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/mse_pubs/159 Ionic Conductivity of Mixed Glass Former 0.35Na2O + 0.65[xB2O3 + (1 − x)P2O5] Glasses Randilynn Christensen,† Garrett Olson, and Steve W. Martin* Department of Materials Science and Engineering Iowa State University, Ames, Iowa 50011 ABSTRACT: The mixed glass former effect (MGFE) is defined as a nonlinear and nonadditive change in the ionic conductivity with changing glass former fraction at constant modifier composition between two binary glass forming compositions. In this study, mixed glass former (MGF) sodium borophosphate glasses, 0.35Na2O + 0.65[xB2O3 + (1 − x)P2O5], 0 ≤ x ≤ 1, have been prepared, and their sodium ionic conductivity has been studied. The ionic conductivity exhibits a strong, positive MGFE that is caused by a corresponding strongly negative nonlinear, nonadditive change in the conductivity activation energy with changing glass former content, x. We describe a successful model of the MGFE in the conductivity activation energy terms of the underlying short-range order (SRO) phosphate and borate glass former structures present in these glasses. To do this, we have developed a modified Anderson-Stuart (A−S) model to explain the decrease in the activation energy in terms of the atomic level composition dependence (x) of the borate and phosphate SRO structural groups, the Na ion concentration, and the Na mobility. In our revision of the A−S model, we carefully improve the treatment of the cation jump distance and incorporate an effective Madelung constant to account for many body coulomb potential effects. Using our model, we are able to accurately reproduce the composition dependence of the activation energy with a single adjustable parameter, the effective Madelung constant, that changes systematically with composition, x, and varies by no more than 10% from values typical of oxide ceramics. Our model suggests that the decreasing columbic binding energies that govern the concentration of the mobile cations are sufficiently strong in these glasses to overcome the increasing volumetric strain energies (mobility) caused by strongly increasing glass-transition temperatures combined with strongly decreasing molar volumes of these glasses. The dependence of the columbic binding energy term on the relative high-frequency dielectric permittivity suggests that the increased polarizability of the bridging oxygens connecting SRO tetrahedral boron units to phosphorus units causes further charge delocalization away from the negatively charged tetrahedral boron units, leading to a lowering of the charge density, and is the underlying cause of the MGFE. The mixed glass former effect (MGFE) is defined as a nonlinear and nonadditive change in the ionic conductivity with changing glass former fraction at constant modifier composition between two binary glass forming compositions. In this study, mixed glass former (MGF) sodium borophosphate glasses, 0.35Na2O + 0.65[xB2O3 + (1 − x)P2O5], 0 ≤ x ≤ 1, have been prepared, and their sodium ionic conductivity has been studied. The ionic conductivity exhibits a strong, positive MGFE that is caused by a corresponding strongly negative nonlinear, nonadditive change in the conductivity activation energy with changing glass former content, x. We describe a successful model of the MGFE in the conductivity activation energy terms of the underlying short-range order (SRO) phosphate and borate glass former structures present in these glasses. To do this, we have developed a modified Anderson-Stuart (A−S) model to explain the decrease in the activation energy in terms of the atomic level composition dependence (x) of the borate and phosphate SRO structural groups, the Na ion concentration, and the Na mobility. In our revision of the A−S model, we carefully improve the treatment of the cation jump distance and incorporate an effective Madelung constant to account for many body coulomb potential effects. Using our model, we are able to accurately reproduce the composition dependence of the activation energy with a single adjustable parameter, the effective Madelung constant, that changes systematically with composition, x, and varies by no more than 10% from values typical of oxide ceramics. Our model suggests that the decreasing columbic binding energies that govern the concentration of the mobile cations are sufficiently strong in these glasses to overcome the increasing volumetric strain energies (mobility) caused by strongly increasing glass-transition temperatures combined with strongly decreasing molar volumes of these glasses. The dependence of the columbic binding energy term on the relative high-frequency dielectric permittivity suggests that the increased polarizability of the bridging oxygens connecting SRO tetrahedral boron units to phosphorus units causes further charge delocalization away from the negatively charged tetrahedral boron units, leading to a lowering of the charge density, and is the underlying cause of the MGFE.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural studies of mixed glass former 0.35Na2O + 0.65[xB2O3 + (1 - x)P2O5] glasses by Raman and 11B and 31P magic angle spinning nuclear magnetic resonance spectroscopies.

The mixed glass former (MGF) effect (MGFE) is defined as a nonlinear and nonadditive change in the ionic conductivity with changing glass former composition at constant modifier composition. In this study, sodium borophosphate 0.35Na(2)O + 0.65[xB(2)O(3) + (1 - x)P(2)O(5)], 0 ≤ x ≤ 1, glasses which have been shown to exhibit a positive MGFE have been prepared and examined using Raman and (11)B ...

متن کامل

Three-dimensional structure of multicomponent (Na2O)0.35 [(P2O5)1 − x(B2O3)x]0.65 glasses by high-energy x-ray diffraction and constrained reverse Monte Carlo simulations

Experimental structure functions for (Na2O)0.35[(P2O5)1−x(B2O3)x ]0.65 glasses, where x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0, have been measured by high-energy x-ray diffraction up to wavevectors of 28 Å −1 to obtain atomic pair distribution functions with high real space resolution. The experimental diffraction data have been used to guide constrained reverse Monte Carlo simulations of the three-...

متن کامل

Electrical conductivity anomaly in silver vadadium-tellurite glasses at temperatures higher than a characteristic temperature: evidence for an ionic-nonadiabatic polaronic mixed conduction

Electrical conduction anomaly was observed in the mixed ion-polaron regime for xAg2O-40TeO2-(60-x)V2O5 glassy system with 0 ≤x≤ 50 mol%, which were prepared by common melt quenching method. For the understudied glasses, the temperature dependence of dc electrical conductivity was measured from a characteristic temperature to 380 K, which certified their semiconducting nature. The measured condu...

متن کامل

IR, Raman, and NMR studies of the short-range structures of 0.5Na2S + 0.5[xGeS2 + (1-x)PS(5/2)] mixed glass-former glasses.

A nonlinear and nonadditive composition-dependent change of the ionic conductivity in mixed glass-former (MGF) glasses when one glass former, such as PS(5/2), is replaced by a second glass former, such as GeS2, at constant alkali modifier concentrations, such as Na2S, is known as the mixed glass-former effect (MGFE). Alkali ion conducting glasses are of particular interest for use as solid elec...

متن کامل

Mixed barrier model for the mixed glass former effect in ion conducting glasses.

Mixing two types of glass formers in ion conducting glasses can be exploited to lower conductivity activation energy and thereby increasing the ionic conductivity, a phenomenon known as the mixed glass former effect (MGFE). We develop a model for this MGFE, where activation barriers for individual ion jumps get lowered in inhomogeneous environments containing both types of network forming units...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017